top of page

出版物

Peer-reviewed articles (IFs from Clarivate)

16. Yoichi W (2023) The complete chloroplast genome sequence of Swertia japonica (Schult.) Makino (Gentianaceae). Mitochondrial DNA Part B, 8:11, 1179-1182. DOI: 10.1080/23802359.2023.2275335

15. Yoichi W, Matsuzawa S, Tamaki I, Nagano AJ, Oh S-H (2023) Genetic differentiation and evolution of broad-leaved evergreen shrub and tree varieties of Daphniphyllum macropodum (Daphniphyllaceae). Heredity 131: 211–220. https://www.nature.com/articles/s41437-023-00637-2

14. Yoichi WTamaki IOh S-HNagano AJUehara KTomaru NAbe H (2023) The evolutionary history of rice azaleas (Rhododendron tschonoskii alliance) involved niche evolution to a montane environment. American Journal of Botany 110: e16166. https://doi.org/10.1002/ajb2.16166

13. Xia X-M, Yang M-Q, Li C-L, Huang S-X, Jin W-T, Shen T-T, Wang F, Li X-H, Yoichi W, Zhang L-H, Zheng Y-R, Wang X-Q (2022) Spatiotemporal evolution of the global species diversity of Rhododendron. Molecular Biology and Evolution 39: msab314. https://doi.org/10.1093/molbev/msab314 (IF=8.8)

12. Yoichi W, Ono E, Tsunamoto Y, Matsuo A, Suyama Y, Uehara K (2021) How co-distribution of two related azaleas (Rhododendron) formed in the Japanese archipelago: insights from evolutionary and demographic analyses. Tree Genetics and Genomes 17: 30. (IF=2.297)

11. Yoichi W, Takahashi M, Nagano AJ, Uehara K, Abe H (2021) Evolutionary effects of geographic and climatic isolation between Rhododendron tsusiophyllum populations on the Izu Islands and mainland Honshu of Japan. Heredity 126: 859-868.  https://doi.org/10.1038/s41437-021-00417-w (IF=3.821)

10. Yoichi W, Minamitani T, Oh S-H, Nagano AJ, Abe H, Yukawa T (2019) New taxa of Rhododendron tschonoskii alliance (Ericaceae) from East Asia. PhytoKeys 134: 97-114. https://doi.org/10.3897/phytokeys.134.38216 (IF=1.500)

紹介記事: http://tenbou.nies.go.jp/news/jnews/detail.php?i=28124

紹介記事: https://mainichi.jp/articles/20191225/k00/00m/040/064000c

9. 片倉慶子,河上友宏,渡辺洋一,藤井英二郎,上原浩一 (2019) 日本のイチョウ巨木の遺伝的変異の地域的特性.日本緑化工学会誌44: 606-612

8. Yoichi W, Kawamata I, Matsuki Y, Suyama Y, Uehara K, Ito M (2018) Phylogeographic analysis suggests two origins for the riparian azalea Rhododendron indicum (L.) Sweet. Heredity 121: 594-604. doi: 10.1038/s41437-018-0064-3 (IF=3.872)

7. Yoichi W, Sakaguchi S, Ueno S, Tomaru N, Uehara K (2017) Development and characterization of EST-SSR markers for the genus Rhododendron section Brachycalyx (Ericaceae). Plant Species Biology 32: 455-459. doi: 10.1111/1442-1984.12155 (IF=1.250)

 

6. Yoichi W, Jin X-F, Peng C-I, Tamaki I, Tomaru N (2017) Contrasting diversification history between insular and continental species of three-leaved azaleas (Rhododendron sect. Brachycalyx) in East Asia. Journal of Biogeography 44: 1065-1076 (IF=4.248)

 

5. Tamaki I, Yoichi W, Matsuki Y, Suyama Y, Mizuno M (2017) Inconsistency between morphological traits and ancestry of individuals in the hybrid zone between two Rhododendron japonoheptamerum varieties revealed by a genotyping-by-sequencing approach. Tree Genetics and Genomes 13: 4 (IF=1.624)

4. Yoichi W, Tamaki I, Sakaguchi S, Song J-S, Yamamoto S-I, Tomaru N (2016) Population demographic history of a temperate shrub, Rhododendron weyrichii (Ericaceae), on continental islands of Japan and South Korea. Ecology and Evolution 6: 8800-8810 (IF=2.537)

3. Nakagawa M, Isogimi T, Inanaga M, Abe K, Okada T, Yoichi W, Kobayakawa K, Toyama C, Ito K, Kawashima N, Otani K, Hori M, Tani S, Higuchi K, Asano I, Kawahara K, Yamauchi A, Kato D, Matsushita M (2015) Inter-specific and sexual differences in architectural traits of two dioecious Lindera species (Lauraceae). Plant Ecology 216: 99-109 (IF=1.463)

2. Yoichi W, Tomaru N (2014) Patterns of geographic distribution have a considerable influence on population genetic structure in one common and two rare species of Rhododendron (Ericaceae). Tree Genetics and Genomes 10: 827-837 (IF=2.435)

1. Isogimi T, Matsushita M, Watanabe Y, Nakagawa M (2011) Sexual differences in physiological integration in the dioecious shrub Lindera triloba: a field experiment using girdling manipulation. Annals of Botany 107:1029-1037 (IF=3.388)

Reports

8. 渡辺洋一(2023)令和4 年度森林遺伝育種学会奨励賞受賞研究. ツツジ属を対象とした日本列島の種多様性創出過程の解明. 森林遺伝育種 12: 40-45 (in Japanese)

7. 渡辺洋一(2023)日本の森林樹木の地理的遺伝構造(39)シロヤシオ(ツツジ科ツツジ属). 森林遺伝育種 12: 1-5 (in Japanese)

6. 渡辺洋一(2022)日本の森林樹木の地理的遺伝構造(38)ツクシアケボノツツジ(ツツジ科ツツジ属). 森林遺伝育種 11: 192-196 (in Japanese)

5. 渡辺洋一(2020)日本の森林樹木の地理的遺伝構造(29)サツキ(ツツジ科ツツジ属). 森林遺伝育種 9: 122-126 (in Japanese)

4. 渡辺洋一(2019)系統学と集団遺伝学的アプローチによるツツジ科ツツジ属ミツバツツジ節の進化と多様化. 森林遺伝育種 8: 188-193 (in Japanese)

3. 渡辺洋一(2017)日本の森林樹木の地理的遺伝構造(17) オンツツジ(ツツジ科ツツジ属). 森林遺伝育種 6: 54-58 (in Japanese)

2. 玉木一郎、木村恵、加藤珠理、阪口翔太、渡辺洋一、小笠原玄記、九石太樹、岩崎貴也、内山憲太郎、鳥丸猛、近藤俊明、上野真義、村上聡 (2014) 第4回森林遺伝学若手勉強会の報告. 森林遺伝育種 3: 37-41 (in Japanese)

1. 渡辺洋一 (2010) 日本の絶滅危惧樹木シリーズ(34)-ジングウツツジ・アマギツツジ-. 林木の育種 236: 43-46 (in Japanese)

Books

5. 渡辺洋一  (2022) サツキ (ツツジ科ツツジ属).日本における森林樹木の遺伝的多様性と地理的遺伝構造 (戸丸信弘・内山憲太郎・玉木一郎・阪口翔太 編), pp. 204-208, 森林遺伝育種学会. ISBN: 978-4-944005-32-1

4. 渡辺洋一  (2022) オンツツジ (ツツジ科ツツジ属).日本における森林樹木の遺伝的多様性と地理的遺伝構造 (戸丸信弘・内山憲太郎・玉木一郎・阪口翔太 編), pp. 199-203, 森林遺伝育種学会. ISBN: 978-4-944005-32-1

3. 渡辺洋一, 高橋修 (2018) ツツジ・シャクナゲハンドブック, 文一総合出版

https://www.bun-ichi.co.jp/tabid/57/pdid/978-4-8299-8138-2/Default.aspx

2. Watanabe Y, Shimomura M, Guo X, Muhammad R, Suzuki T, Takenaka C, (2014) Influence of human activity on water and soil conditions of agricultural land in Laos. In. Integrated studies of social and natural environmental transition in Laos (edited by Yokoyama S, Okamoto K, Takenaka C, Hirota I), pp. 141-158, Springer.

 

1. Koyama T, Ingxay P, Watanabe Y, Jin Y, Hirota I (2014) Land use management and plant utilization of a swidden system in Northern Laos: a case study of Kachet Village, Nam Bak District, Luang Phabang Province. In: Integrated studies of social and natural environmental transition in Laos (edited by Yokoyama S, Okamoto K, Takenaka C, Hirota I), pp. 101-118, Springer.

bottom of page